Nondeterministic Finite Automata (NFA)

Introduction

O

Nondeterminism

* An important notions(or abstraction) in computer science

» refer to situations in which the next state of a computation is not

uniquely determined by the current state.
Ex: find a program to compute max(X,y):
prl:case X >y => print x;

y > X=>printy
endcase;
Then which branch will be executed when x =y ?
==> don't care nondeterminism

Pr2: do-one-of {

{if x <y fail; print x},

{ify <x falil, print y} }.
==>The program is powerful in that it will never choose branches that
finally lead to ‘fail’ -- an unrealistic model.

O O O O O O OO OO0

nondeterminism (cont'd)

O

Causes of nodeterminism in real life:
Incomplete information about the state
external forces affecting the course of the computation
ex: the behavior of a process in a distributed system

Nondeterministic programs cannot be executed directly but can
be simulated by real machine.

Nondeterminism can be used as a tool for the specification of
problem solutions.

an important tool in the design of efficient algorithms

There are many problems with efficient nondeterministic algorithm but no
known efficient deterministic one.

the open problem NP =P ?
How to make DFAs become nondeterministic ?

==> allow multiple transitions for each state-input-symbol pair
—=> modify the transition function d.

A NFA is a five-tuple N = (Q,S,d,S,F) where everything is the
same as in a DFA, except:
S c Q is a set of starting states, instead of a single state.

dis the transition function d: Q x S -> 2. For each state p and symbol a,
d(p,a) is the set of all states that N is allowed to move from p in one step
under input symbol a. a

diagrammatic notation: p --a-->q D— (¢
Note: d(p,a) can be the empty set

The extended transition function D (multi-step version of d) for
NFA can be defined analogously to that of DFAs:

D: 29xS* -> 2Q |s defined inductively as follows:
1. Basis: D(A, e) = for every set of statesA (6.1)
2. Ind. case: D(A, xa) = foreveryx e S*andae€ S (6.2)

Note: Intuitively g € D(A,x) means g can be reached from some
state € A after scanning input string X.

Note: Like DFAs, the extended transition function D on a NFA N is
uniquely determined by N.
pf: left as an exercise.
N =(Q,5,d,S,F):aNFA; x:any string over S;
D: the extended transition function of N.
1. xis said to be accepted by N if D(S,x) nF = {}

I.e., X Is accepted if there is an accept state g € F such that g is reachable from a
start state under input string x (i.e., q € D(S,x))

2. The set (or language) accepted by N, denoted L(N), is the set of all
strings accepted by N. i.e.,
L(N) =4 {X € S* | N accepts x }.
3. Two finite automata (FAs, no matter deterministic or
nondeterministic) M and N are said to be equivalent if L(M) = L(N).

Equivalence of FAs

O

Ex: Find a NFA accepting A ={ x € {0,1}* | the fifth symbol
from the rightis 1 } = {010000, 11111,...}.

Sol: 1. (in diagrabplform)
O 1 01 o1 01 01

C o o A A o

2: tabular form:

3. tuple form: (Q,S.dS,F)=(C , ., , .,).

Note: there are many possible computations on the input
string: 010101, some of which reach the (only) final state
(accepted or successful computation), some of which do

not (fail).

| 70, 1., 0, 1,- 0_- 1,-(fail)
Since there exists apf ageepted cemp 0@, by definition,
the string Is acce theanhachihe
1
1 .01 01 _ 01

NTTT/

-0-1-0-1 -0 - 1- (accept)

Lem 6.1: D(A,xy) = D(D(A,X),y).
pf: by induciton on |y|:
1. ly] =0=> D(A,xe) =D(A,x) =D(D(A,x),e -- (6.1).
2. y=1zc=>D(Axzc) = U, . paxydla,c) --(6.2)
=U q € A(D(AX),2) d(q,c) -- Ind. hyp
= D(D(A,x),zc) -- (6.2)
Lem 6.2 D commutes with set union:
l.e.,, D (Ui AiX) = U . D(A;x). In particular, D(A,x) = U, A D({p}.X)
pf:byind.on |[x]|. LetB=U,; _, A
L[x|=0=>D (U A8 =Ui. A= U DA, e --(6.1)
2.x=ya=> DU A,ya)= U, _pgy dp.a) --(6.2)

= Upcui. peaiy) d(P,2) --Ind. hyp. =U; U, paix d(P,a) -- settheory =
U;.,D(Ayya) (6.2)

el

e l el

N = (Qp,S,0h,Sp:Fr) @ NFA.

M = (Q\,S,dy,.Sm.Fy) (denoted 2N): a DFA where
Qu=2N
du(Aa) =Dy(Aa) (= Ugeadu(q,a)) forevery Ac Q.
Sy = Sy and

Fv={AcQn | AN Fy=1{}}.
note: States of M are subsets of states of N.

Lem 6.3: for any A < Q. and x in S*, D,(A,X) = Dy(A,X).
pf: by ind on |x]|. if x =e=>Dy,(A,e) = A =Dy(A,e). --(def)
If x =ya=>Dy(Ayya) = dy(Du(Ay),a) -- (def) = dy(Dn(AY).a) --
Ind. hyp. = D\(Dn(A)Y),a) -- defofd,, =D\(A, ya) --lem6.1

Theorem 6.4: M and N accept the same set.

pf: X eL(M) iff Dy, (sy,X)€Fy, iff Dy(SpX) Fyy = {3 iff x e L(N).

1. NFA N accepting A = { x € {0,1}* | the second symbol from the
rightisl }={xla| x € {O,1}*anda < {0,1} }.

sol:
0,1 0 1
Q 1 0,1 | e
o o 0 {} {} {}
P q r -> {p} {p} {p.q}
2. DFA M equivalent E?}}F g} g}
to N is given as : {p.q} {p.r} {p.q.r}
3 some states of M ar {p,r}F {p} {p.,q}
. SO0me states O are {q,r}F {r} {r}
redundant in the sense {p,q,r}F {p,r} {p.,q.r}

that they are never reachable

from the start state and hence can be removed from the machine
w/0 affectina the lanauaoes accepted.

sol:

0,1 0 1
1 i, T T
@ >0 >0 {} {} {}
9 r > {p} {p} {p,q}
{a} {r} {r}
1. Copy the transition table {r}F {} {}
* — {p} {p} {p,q}
2. add ROW(S) /* e .G} .1 pan
Sum,,_s Row(p) to table */ {p,r}F {p} {p,q}
{a.,r}F {r} {r}
q,r}k {p {p,a.r}

3. D={X]|X in Row(p).tail } —{S} // S |{spthe Initial set o%: states
4. While D !1={} do {
S1=D.pop() ; // remove any element from D.
add(Row(S1)) to table

D =D U Row(Sl1).talil.

Another extension of FAs, useful but adds no more power.

An e-transition is a transition with label g a label standing for
the empty string e e

The FA can take such a P .
transition anytime w/o reading an input symbol.
EXx 6.5 : The set accepted by the FA is {b,bb,bbb}.

Ex 6.6 : A NFA-eaccepting the set {x € {a}* | |x| is dividable by 3
or5}.

Cp e .,y €
real advantage of e-transition: — > >
i o b e b b
convenient for specification
add no extra power

Ex6.5

N =(Q,5,d,S,F) : a NFA-ewhere

Q, S, Sand F are the same as NFA,

d: Qx (SU {e}) -> 2%.
The set Eclosure(A) is the set of ref. and transitive closure of the
e-transition of A =

{qgeQ |3 epathp—p,—p,..-p, WwithpeAandp,=q}

Note: Eclosure(A) (abbreviated as EC(A)) = EC(EC(A)).
The multistep version of dis modified as follows:
D: 2@ x S* > 2% where, foral AS Q,y € S*,a€A
D(A, e = Eclosure(A)
D(A, ya) =U ;cpay) Eclosure(d(p,a))

L(N) ={ x| D(S),x) nF={}}//The language accepted by N

Eclosure(A) is the set of states reachable from states of A without consuming any
Input symbols,

(i.e., geEclosure(A) iffape A s.t. g € D(p, €) for some k = 0).
Eclosure(A) can be computed as follows:

1. R=F={}; nF=A; //F: frontier; nF: new frontier
2. do{ R =R UNnNF; F=nF; nF={};

3. For each g € F do

4. nF= nF U (d(g,e)- R)

5. }twhile nF # {};

6. return R

Note:1. g € D(A, &) => g € R after k-th iteration of the program.

2. We can precompute the matrix T* where T is the e-transition matrix of the NFA.
and use the result to get Eclosure(A) for all required As.

N = (Qn,S,d:Sh.Fr) : @ NFA-ewhere dy : Q x (SU {e}) -> 2%.
M = (Q\,S,dy,.Sm,Fy) (denoted 2N): a DFA where
Qu={ECA) |AcQy}
th(A,2) = Uge eea) EC(dy(g,a)) for every A € Qy,.
sy = EC(Sy) and

Fv={A € Qu | AN Fy = {}}.
note: States of M are subsets of states of N.

Lem 6.3: for any A < Q. and x € S*, Dy,(A,X) = Dy(A,X).
pf: by ind on |x]|. if x = e=>D,,(A,e) = A=EC(A) = Dy(A,e). --(def)
if x = ya =>Dy(Aya) = dy(Dy(Ay).a) -- (def)
= dy(Dy(AYY),a) -- Ind. hyp.
= U yconay) EC(dy(a,a)) -- defof dy,
= Dy (A, ya) — def of Dy
Theorem 6.4: M and N accept the same set.
pf: X eL(M) iff Dy, (S, X) eFyy iff D(EC(Sy). X)) Fy = {3 iff x € L(N).

If A and B are regular languages, then so are AB and A*.
M =(Q,,5,d,S,,F), N=(Q,,S,d,,S,,F,) : two NFAs
The machine M « N, which firstly executes M and then execute sN,
can be defined as follows:
M.N=4:(Q, S, d, S, F) where

Q = disjoint union of Q, and Q,,

S=5,

F=F,,

d=dUd,U{(p,eq)|pe FrandgeS,}
Lem: 1. x e L(M)andy € L(N) then xy € L(MN)

2.X e L(IMN) =>%y,zs.t. x=yzandy € L(M) and z € L(N).

Corollary: L(MN) =L(M) L(N)

M* machine

* M=(Q.,S,d,S;,F,) :aNFA
 The machine M*, which executes M a nondeterministic
number of times, can be defined as follows:
* M* =, (Q, S, d, S, F) where
Q =Q U {s,f}, where s and f are two new states ¢Q
S={s}, F={f},
d=d U{(s,eN}U{(s.ep)Ipe S;}U{(g.es)lgeF;}

4 e)
Theorem: L(M*) = L(M)* / M
Nt
_ M*)

