
(LECTURE 4)

Nondeterministic Finite Automata (NFA)



Introduction

 Non deterministic finite automata

 Language accepted by a NFA

 String accepted by Non Deterministic finite automata 



Nondeterminism

 An important notions(or abstraction) in computer science
 refer to situations in which the next state of a computation is not 

uniquely determined by the current state.
 Ex: find a program to compute max(x,y):
 pr1: case   x   y => print x;
 y  x => print y
 endcase;
 Then which branch will be executed when x = y ?
 ==> don't care nondeterminism
 Pr2: do-one-of {
 {if x < y fail; print x},
 {if y < x fail, print y} }.
 ==>The program is powerful in that it will never choose branches that 

finally lead to ‘fail’ -- an unrealistic model.  
 ==> don't know nondeterminism. 



nondeterminism (cont'd)

 a nondeterministic sorting algorithm:
 nondet-sort(A, n)
 1. for i = 1 to n do
 2.   nondeterministically let  k := one of  {i, ..., n} ;        
 3.   exchange A[i] and A[k]
 4. endfor
 5 for i = 1 to n-1 do if A[i] > A[i+1] then fail;
 6. return(A).
 Notes: 1. Step 2 is magic in that it may produce many possible 

outcomes. However all incorrect results will be filtered out at step 5.
 2. The program run in time NTIME O(n)
 cf: O(n lg n) is required for all sequential machines.



nondeterminism (cont'd)

 Causes of nodeterminism in real life:
 incomplete information about the state
 external forces affecting the course of the computation
 ex: the behavior of a process in a distributed system

 Nondeterministic programs cannot be executed directly but can 
be simulated by real machine. 

 Nondeterminism can be used as a tool for the specification of 
problem solutions.  

 an important tool in the design of efficient algorithms
 There are many problems with efficient nondeterministic algorithm but no 

known efficient deterministic one.
 the open problem NP = P ? 

 How to make DFAs become nondeterministic ?
==> allow multiple transitions for each state-input-symbol pair 
==> modify the transition function d.



Formal Definition of NFAs

 A NFA is a five-tuple N = (Q,S,d,S,F) where everything is the 
same as in a DFA, except:
 S Q is a set of starting states, instead of a single state.
 d is the transition function d: Q x S -> 2Q. For each state p and symbol a, 
d(p,a) is the set of all states that N is allowed to move from p in one step 
under input symbol a.

 diagrammatic notation:  p --a--> q
Note: d(p,a) can be the empty set

 The extended transition function D (multi-step version of d) for 
NFA can be defined analogously to that of DFAs: 
D: 2QxS* -> 2Q is defined inductively as follows:
1. Basis: D(A, e) =  ____ for every set of states A (6.1)
2. Ind. case: D(A, xa) = ____ for every x ∈ S* and a ∈ S (6.2)

Note: Intuitively q  D(A,x) means q can be reached from some 
state  A after scanning input string x.

p qa



Languages accepted by  NFAs

 Note: Like DFAs, the extended transition function D on a NFA N is 
uniquely determined by N.
 pf: left as an exercise.

 N = (Q,S,d,S,F) : a NFA; x: any string over S;
D: the extended transition function of N. 

1.  x is said to be accepted by N if D(S,x)  F  {}
 i.e., x is accepted if there is an accept state q  F such that q is reachable from a 

start state under input string x (i.e., q  D(S,x))       

2. The set (or language) accepted by N, denoted L(N), is the set of all 
strings accepted by N. i.e.,
 L(N) =def  {x  S* | N accepts x }.

3. Two finite automata (FAs, no matter deterministic or 
nondeterministic) M and N are said to be equivalent if L(M) = L(N).



Equivalence of FAs

Note: under such definition, every DFA M = (Q,S,d,s,F) is 
equivalent to an NFA N = (Q,S,d',{s},F) where
 d'(p,a) = {d(p,a)} for every state p and input a.

 Problem: Does the converse hold as well ?
 i.e. For every NFA N there is a DFA M s.t. L(M) = L(N).
 Ans: ____



Some examples of NFAs

Ex: Find a NFA accepting A = { x  {0,1}* | the fifth symbol 
from the right is 1 } = {010000, 11111,...}.

Sol: 1. (in diagram form)

2: tabular form:

3. tuple form: (Q,S,d,S,F) = (__,__,__,__,__).

1 0,1 0,1 0,1 0,1
0,1



Example of strings accepted by NFAs

 Note: there are many possible computations on the input 
string: 010101, some of which reach the (only) final state 
(accepted or successful computation), some of which do 
not (fail).

 Since there exists an accepted computation, by definition, 
the string is accepted by the machine

1 0,1 0,1 0,1 0,1
0,1

- 0  - 1  - 0  - 1   - 0   - 1  - (accept)

- 0  - 1  - 0  - 1   - 0   - 1  - (fail)



Some properties about the extended 
transition function D

 Lem 6.1: D(A,xy) = D(D(A,x),y).

 pf: by induciton on |y|: 
1. |y| = 0 =>  D(A,xe) = D(A,x) = D(D(A,x),e)  -- (6.1).
2.  y = zc => D(A,xzc) = Uq  D(A,xz) d(q,c)   -- (6.2)

= U q (D(A,x),z) d(q,c) -- ind. hyp.
= D(D(A,x),zc) -- (6.2)

 Lem 6.2 D commutes with set union: 
 i.e., D (Ui  I Ai,x) = Ui  I D(Ai,x). in particular, D(A,x) = Up A D({p},x)

 pf: by ind. on |x|. Let B = U i  I Ai

1. |x|= 0 => D (U i  I Ai, e) = Ui  I Ai =  Ui  I D(Ai, e)  -- (6.1)

2. x = ya =>  D (U i  I Ai, ya) =  U p  D(B,y) d(p,a)  -- (6.2)

= UpUi I D(Ai,y) d(p,a)  -- ind. hyp.  = UiIUp D(Ai,x) d(P,a)  -- set theory = 
U i  I D(Ai,ya)   (6.2)



The subset construction

 N = (QN,S,dN,SN,FN) : a NFA.

 M = (QM,S,dM,sM,FM)  (denoted 2N): a DFA where
 QM = 2 QN

 dM(A,a) = DN(A,a)  ( = ⋃q∈ A dN(q,a) ) for every A  QN.

 sM = SN and

 FM = {A  QN | A FN  {}}.

 note: States of M are subsets of states of N.

 Lem 6.3: for any A  QN. and x in S*, DM(A,x) = DN(A,x).

pf: by ind on |x|. if x = e=> DM(A,e) = A = DN(A,e). --(def)

if x = ya =>DM(A,ya) =  dM(DM(A,y),a)  -- (def) = dM(DN(A,y),a) --

ind. hyp.  = DN(DN(A,y),a)  -- def of dM =DN(A, ya) -- lem 6.1
Theorem 6.4: M and N accept the same set.

pf: x L(M) iff DM(sM,x)FM iff DN(SN,x) FN  {} iff x  L(N).



Equivalence of NFAs and DFAs - an example

1. NFA N accepting A = { x  {0,1}* | the second symbol from the 
right is 1 } = {x1a | x  {0,1}* and a  {0,1} }.

sol: 

2. DFA M equivalent 

to N is given as :

3. some states of M are 

redundant in the sense 

that they are never reachable

from the start state and hence can be removed from the machine  
w/o affecting the languages accepted.

1 0,1
0,1

p q r

0 1
---------------------------------------------------------

{} {} {}
-> {p} {p} {p,q}

{q} {r} {r}
{r}F {} {}
{p,q} {p,r} {p,q,r}
{p,r}F {p} {p,q}
{q,r}F {r} {r}
{p,q,r}F {p,r} {p,q,r}



A more human friendly method
sol: 

1. Copy the transition table

2. add Row(S) /* =def

SumpS Row(p) to table */

3. D={X|X in Row(p).tail } – {S} // S is the initial set of states

4.  While D != {} do {

S1 = D.pop() ; // remove any element from D.

add(Row(S1)) to table

D = D U Row(S1).tail.

}

1 0,1
0,1

p q r

0 1
---------------------------------------------------------

{} {} {}
-> {p} {p} {p,q}

{q} {r} {r}
{r}F {} {}
{p} {p} {p,q}
{p,q} {p,r} {p,q,r}
{p,r}F {p} {p,q}
{q,r}F {r} {r}
{p,q,r}F {p,r} {p,q,r}



e-transition

 Another extension of FAs, useful but adds no more power.

 An e-transition is a transition with label e, a label standing for 
the empty string e.

 The FA can take such a 

transition anytime w/o reading an input symbol.

Ex 6.5 : The set accepted by the FA is {b,bb,bbb}.

Ex 6.6 : A NFA-eaccepting the set {x ∈ {a}* | |x| is dividable by 3 
or 5 }.

 real advantage of e-transition:
 convenient for specification

 add no extra power

p qe

s

qp

t u

r
b b b
e e
e e

Ex6.5



NFA-e

 N = (Q,S,d,S,F) : a NFA-e,where 
 Q, S, S and F are the same as NFA,
 d : Q x (SU {e}) -> 2Q.

 The set Eclosure(A) is the set of ref. and transitive closure of the 
e-transition of A = 
{ q ∈ Q |∃ e-path p – p1 – p2 … -pn with p ∈ A and pn = q }

Note: Eclosure(A) (abbreviated as EC(A) ) = EC(EC(A)).
 The multistep version of d is modified as follows:
 D: 2Q x S*  2Q where, for all A ⊆ Q , y ∈ S*, a ∈ A
 D(A, e) = Eclosure(A)
 D(A, ya) = U p ∈ D(A,y) Eclosure( d(p,a) )

 L(N) = { x | D(S), x)  F  {} } //The language accepted by N 



E-closure

 Eclosure(A) is the set of states reachable from states of A without consuming any 
input symbols,

(i.e., q∈Eclosure(A) iff∃p∈ A s.t. q ∈ D(p, ek) for some k ≥ 0 ).

 Eclosure(A) can be computed as follows:

1. R=F={}; nF=A; //F: frontier; nF: new frontier 
2. do {  R = R U nF; F = nF; nF={};
3. For each q ∈ F do
4.  nF = nF U (d(q,e)- R)  
5. }while nF ≠ {};   
6. return R

Note:1.  q ∈ D(A, ek) => q ∈ R after k-th iteration of the program.

2. We can precompute the matrix T* where T is the e-transition matrix of the NFA. 
and use the result to get Eclosure(A) for all required As.



The subset construction for NFA-e

 N = (QN,S,dN,SN,FN) : a NFA-e.where dN : Q x (SU {e}) -> 2Q.
 M = (QM,S,dM,sM,FM)  (denoted 2N): a DFA where
 QM = { EC(A) | A  QN }
 dM(A,a) = ⋃q∈ Ec(A) EC(dN(q,a)) for every A  ∈ QM.
 sM = EC(SN) and
 FM = {A  QM | A FN  {}}.
 note: States of M are subsets of states of N.

 Lem 6.3: for any A  QN. and x ∈ S*, DM(A,x) = DN(A,x).
pf: by ind on |x|. if x = e=> DM(A,e) = A =EC(A) = DN(A,e). --(def)
if x = ya =>DM(A,ya) =  dM(DM(A,y),a)  -- (def)  

= dM(DN(A,y),a)  -- ind. hyp.  
= U q ∈ DN(A,y) EC(dN(q,a))  -- def of dM

= DN(A, ya) – def of DN

Theorem 6.4: M and N accept the same set.
pf: x L(M) iff DM(sM,x)FM iff DN(EC(SN),x) FN  {} iff x  L(N).



More closure properties

 If A and B are regular languages, then so are AB and A*.

 M = (Q1,S,d1,S1,F1), N=(Q2,S,d2,S2,F2) : two NFAs

 The machine M  N, which firstly executes M and then execute sN,  
can be defined as follows: 

 M  N =def (Q, S, d, S, F) where
 Q = disjoint union of Q1 and Q2,

 S = S1,

 F = F2,

 d= d1 U d2 U { (p, e, q ) | p  F1 and q  S2 }

 Lem: 1. x  L(M) and y  L(N) then xy  L(MN)

2. x  L(MN) => $ y,z s.t. x = yz and y  L(M) and z  L(N).

Corollary:  L(MN) = L(M) L(N)



M* machine

 M = (Q1,S,d1,S1,F1) : a NFA

 The machine M*, which executes M a nondeterministic 
number of times,  can be defined as follows: 

 M* =def (Q, S, d, S, F) where
 Q = Q U {s,f}, where s and f are two new states Q

 S = {s},   F =  {f},

 d= d1 U {(s, e, f)} U {(s,e,p) | p  S1 } U {(q,e,s) | q  F1 }

Theorem: L(M*) = L(M)*
e

e

e

M

M *


